
PMM U.S.S.R.,Vo1.44,pp.520-525 
Copyright Pergamon Press Ltd.1981.Printed in U.K. 

OOZl-8928/81/4 0520 $7.50/O 

UDC 539.3:534.1 

HIGH-FREQUENCY LONG-WAVE SHELL VIBRATION* 

V. L. BERDICHEVSKII and LE KHAN' CBAU 

Equations describing high-frequency long-wave shell vibrations are constructed. 
They are an extension of the equations obtained earlier for plates, to shells /l/. 
The corresponding extension for straight rods is given in /2/. 

1. Long-wave vibrations. A long-wave state is understood to be the state of stress 
whose characteristic scale change along the longitudinal coordinates 1 is considerably great- 
er than the shell thickness h. The possible types of long-wave vibrations can be character- 
ized qualitatively as follows. Let the face surfaces of the shell be load-free. Since E>> k: 
the derivatives of the displacements with respect to the longitudinal coordinates 5" (the 
small Greek indices correspond to projections on the axis E a and run through the values 1,2) 
can be neglected in the Lam6 equations fox the displacements and in the boundary conditions 
as compared with the derivatives with respect to the transverse coordinate E (I E 1 <h/z). Then 
the Lam6 equations decompose into a system of three independent equations 

Here W, and w are projections of the displacement onto the tangent vector and the normal to 
the middle surface. 

Let us list the complete set of particular solutions of (1.1): 

w = u Cos ac, IL‘~ = 0, & = sn., 5=25/h v-1 @I) (1.2) 

w = 0, W.J = qe sin 85, fi = llZn (2 n + 1) (Fir (la)) 

uI = 9 sin ac, u*, = 0, a = */Xx (2n + 1) (LL (n)) 

w = 0, WO=z/,cos~~, p=sn (& W) 

The quantities c. and p run through a countable number of values, however, no indices are super- 
posed on a and p in order to avoid complicated notations. It is understood that its functions 
Al, qO,*and u. correspond each value of a and 6; these functions are also not numbered. In 
each particular solution the u, &%, and u6 depend arbitrarily on the longitudinal coordin- 
ates and depend harmonically on t with frequency o which is determined by the appropriate 
values of a and a from the formulas 

The notation of the appropriate solutions is indicated in parentheses in (1.2). 
For functions u,&,+, 1l, independent of Ea , each of the solutions (1.2) represents an 

exact solution of the Lam6 equations for an infinite plate and corresponds to vibrations of 
transverse fibers occurring in synchronization along the plate. 

For vibrations whose amplitude and frequency vary slowly along the plate, as well as for 
shell vibrations, the equations (1.1) are zero approximations and the solutions (1.2) can 
be considered as the principal terms in a certain asymptotic expansion in which 1,. l(‘(i, II;, ua 
are functions of the longitudinal coordinates Ea and the time i, where 

ilu I al - WI., a+0 J i)t - <tn$~, a* I dt - WY, ii& i tit - <r,Mo 

The values of w in these estimates are taken for the same branch as the corresponding 
function, with the exception of F, (0) and L,; (0) , for which it is assumed that G,, - 0 (cl11 i 1), 
ua, f = 0 (c,ua I 6), where 1 is the characteristic scale of the deformation /3/. 

The branches F,(O) and L,, (0) correspond to the zero value of the natural vibrations 
frequency of a transverse fiber and corespond to the low-frequency vibrations when ~tihfc,~l. 
Independence of the displacements at these branches from the transverse coordinate in the zero 
approximation is part of the Kirchhoff-Love hypothesis /4,5/. All the remaining branches 
correspond to vibrations 'with frequency li, - c, ; h. The propagation time for a perturbation 
over the thickness is commensurate with the period of vibration for them, and it is impossible 
ta consider the displacements polynomials in the transverse coordinate even in a first approx- 
imation. Since o-+00 as /L * 'J, the corresponding vibrations are naturally called high- 
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frequency. 

For instance, for n=1,c,=2500 m/s, h=l mm, we have wlz 4.106 Hz for the lowest "high" 

frequency, i.e., 0, is in the ultrasonic domain. Vibrations of elastic bodies at such a 

frequency can be substantial in problems on impact or in problems on vibrations caused by an 

electromagnetic field. Let us note that for shells inhomogeneous over the thickness and with 

a significant drop in the elastic moduli, o1 is considerably less and can even be in the 

audio frequency domain. 

The branch F,, (@) corresponds to vibrations for which a shift of the transverse fiber 

into the half-wave of a sinusoid occurs. Attempts are made to take this kind of vibrations 

into account in Timoshenko-type shell theories. However, utilization of a linear displace- 

ment distribution over the thickness instead of the correct sinusoid in Timoshenko-type shell 

theories does not permit achieving a satisfactory quantitative correspondence. 

The following vibrations modes oscillate all the more rapidly over the transverse coord- 

inate as n grows. The branch numbered n has 2n or zn+ 1 nodes. 

Any long-wave vibration can be represented as the sum of vibrations corresponding to 

different branches. Two-dimensional equations will be written below for each branch, by using 

a variational-asymptotic method /3/. 

It turns out that the branches possess a remarkable property: they are orthogonal in 

the elastic and kinetic energies in a first approximation. This means that in a first approx- 

imation vibrations of one type do not cause vibrations of another type, and the possibility 

appears for investigating the vibrations of one branch independently of the vibrations of the 

rest. 

2. Dependence of the displacement on the transverse coordinates. We refer 

the undeformed state of the shell to the Lagrange curvilinear coordinates Ea,E 

xi = ri (5") + Eni (E"), - hi2 < 5 < hi2 

Here xi are Cartesian coordinates of the observer, .ri= ri@) is the location of the middle 

surface Q, ni(Ea) is the normal to Q,h is the shell thickness, the Latin superscripts cor- 

respond to projections on the axes zi and run through the values 1,2,3. In the Lagrange co- 

ordinate systemthemetric tensor and strain tensor components are given by the formulas 

gaa=aa@- 2b,& + c&, gas =O, g,=l, gap = ,Q + 2babE + 3cabEz + 0 (h3/R3); ga = 0, gs3 = 1 (2.1) 

'a~ = x~~&+, 0) = r&'~, 6) - Eb&rawi, 8) = W(a: 8) --bag-_by&o; B) $_ &%8 

2E,, = n’Wi, a + .&Wi, E = ~#a f ba”W, + Was E - b,%woS E ,. Es3 = nil&, E = W’S 

Here U$ = wirai, w x luini are the projections of the displacement vector U+ on the tangent 

vectors r,i 5 ri,a. and the normal n", the subscript 3 corresponds to the projection on the 

normal n', a,~, b,p, cap are, respectively, the first, second and third quadratic forms of the 

middle surface Q, thecommain the subscripts denotes partial differentiation with respect to 

the E", the semicolondenotes covariant differentiation relative-to the metric a*, and the 

parentheses in the subscripts denote the symmetrization operation. 

Let the shell edge be rigidly fixed 

wi = 0 on r Y [-hi 2, h/21 (2.2) 

where r is the boundary of the middle surface Q. Let us first set the external load on the 

face surfaces Pi equal to zero. Then the displacements corresponding to free vibrations of 
the shell are extremals of the functional 

I= 'ss "s' (U -K)xdEdQdt (2.3) 

LlQ --h/z 

Here Ei and Kare the median and Gaussian curvature of 52, and dQ is an area element on Q. 

Let us investigate the functional (2.3) by using the variational-asymptotic method /3,6/. 
We assume that the dimensionless parameters h, = h/R (H is the shell minimum radius of 

curvature) and h,, = h/l are small everywhere in &. We make the substitution 5=2ElIt 
and we discard all small terms in the asymptotic sense. We arrive at the zero approximation 

functional 

21F&S[ (A + 24 &$ P aafi $ u~~,~w~,~- p~?r -ppaa&~,,u+,, ,1dgdQ dt 
II n -1 

The Euler equations of this functional yield four series of natural vibrations (1.2). 

We impose the constraints 
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ii = 7p. = ?& 7 u. = 0 on r 12.4) 

on the functions u,$,,$, 4 to satisfy the rigid fixing conditions (2.2). Now we find the next 
approximation for the displacement of branches of the series FL. Considering li a given 
function of Ea, we seek ru,. Keeping the principle terms dependent on 1c‘, and the princi- 
pal cross terms in (2.3), we obtain the functional 

(2.51 

2% = (2hu;%,,2ah-’ sin a5 + ph0(2h-‘w~, 5 + ~L,~COS CC~)(UE-~W~, 5 -; u,~ cos ~5) - po,"ur,waj 

The integral with respect to 5 in the limits i-1,1/ is denoted by <.>. Integration by parts 
was performed and the boundary conditions (2.4) were used in the derivation of (2.5). Let us 
find the extremal of this functional. After taking the variation of (2.5) relative to LC, 
we obtain the equations 

w~,:~ + ~"w~ = [(h + p) / (+)I hau,, sin a<, / 5 \ < 1, woch,z + ‘1, hu,, cos a5 = 0, < = I 1 

They result in the following value of the tangential displacements 

(2.6) 

As should have been expected, the tangential displacements turned out to be very much 
less than the normal. displacement (c@ = 0 in the zero approximation), and are on the order 
of h**u. 

Let us seek the correction to w 
W=UCOSa~+w' 

Here wO is considered fixed and defined by (2.6). 
Without limiting the generality, the following constraint can be imposed on IL'I: 

(Id cos a5> = 0 
It corresponds to the assumption that U = <rucosa~>. 

After discarding small terms containing w'and small cross terms as compared with the 
rest, the functional (2.3) takes the form (2.5) with a Lagrangian given by the formula 

2 = <$ (X + 2~) w;t + -4Hgau sin a$~',~ - 

2h$w&cosa~-+- 2h$-w’a sinat-p(w:#-- 

2pHkl&f co3 a5 tot,, ‘1 
Its extremal has the form 

Finally, we have the following distribution of the displacements over the thickness in 
the series FL (to the accuracy of second order terms in h, and h**): 

Formulas are obtained analogously for the displacements in the three remaining series 

i Hu& cos pc - Jf-uk sin /SC 1 

w-z&-& 
! 
-ssinflc + 

2(-$)“esina.$‘ 

COJ a iv 
p f 0, (5,s = b,B + N&2) 

The fundamental shell feature as compared with plates is that the correction terms in the 

displacements are of the order .k, compared to the principal term, while they are of order h; 

in plates. 
By continuing the iteration process, the next corrections to wand wa can be found. 

They are not written down here since they yield no contribution to the average Lagrangian of 
the first appxoximation. 

3. Average Lagrangians. Let us assume that the quantities u,&,+.u~ in the formulas 

forthedisplacenents are arbitrary functions of Em and 1. Substituting these formulas into 
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the functional (2.3), and retaining components of order h?,h;: and las compared with one, 

we obtain functionals of the type (2.5) with the following average Lagrangians 

k,=+?$+.!$+-.$) 

k,&~k!.+e!& 

k, = - (3H2 - K) ($ + f - 8e2) - 4HZ (I- 3e2 + 4e4) 

h,=-(3H*-K)(~+$)+2H2(1-6eZ+8e4) 

F ,, : 2K = p (( .+$oh + k:“) $& + 2p$‘car; &(B; a) + 

(3.1) 

Expressions for the coefficients k,,kp in the series L,, and for the tensors k,@, k4@ 

in the series Lii are not written down here since they agree in form with the corresponding 

expressions in the series FI and Fil . It is considered that a,p in the series F, and L,, 

are different from zero. The branches FA (0) and L,l (0) (a, B - 0) correspond to classical 

theory and the appropriate Lagrangians are not written down. 
The coefficients with subscripts 1 and 2 agree with the coefficients so denoted for the 

plates /l/, and the formulas go over into the corresponding formulas for plates when the 

coefficients with subscripts 3 and 4 vanish. 
Not only the "principal" terms (containing the factor hP and the differentiation with 

respect to 1) must be retained in the average Lagrangians, but also terms of the next order 

of smallness, which is related to the fact that the sum of the principal terms at the "natura 

frequencies o turns out to be small. 

4. Orthogonality in energy. It turns out that, just as for plates /l/, different 

branches of shell vibrations are orthogonal relative to the elastic and kinetic energies to 
an error not less than h** + h:* + h*h** as compared with one, i.e., 

1" 

The exception is the classical vibrations, the branches Pi (0) and LIi (0) which are not 

mutually orthogonal but are orthogonal to all the other branches. 
The property (4.1) is satisfied under the condition of rigid support (2.5). The compon- 

ents of order h,2 and h& in the expressions for the displacements must be taking intoaccount 

to prove (4.1). 
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The proof is by direct substitution of expressions for the displacement into the function- 

al; the following assertion is established first: any two branches satisfy the following ortho- 
gonality condition independently of the boundary conditions (to the accuracy of terms on the 

order of h *2 $-hi,-+ h,h,, as compared with one) 

(x (a;ie,,,, - p’& $Q) 1, 1) cm dt = 0 
(4.2) 

As for (4.1), the exception for (4.2) is given by the branches PI(O) and ', II w. The 
orthogonality relative to the kinetic energy is then confirmed (by using the rigid support 

conditions). The appropriate calculations are not presented because of their awkwardness. 

5. Equations of forced shell vibrations. Now we assume that external surface 
forces P+' are applied to the face surfaces of the shell (at 5 ihl2). The solution of 
the prcblem is the extremal of the functional(U,l< are defined by formulas (2.3)) 

We seek the solution of the problem in the form 

(5.2) 

The displacements of the natural branches are here expanded to second order termsin h (h,‘,k,,’ 

and h&,,), and the functions u,*cc, q> Ilo in these expansions are arbitrary functions of Ea 

and t. The classical displacements IOO and x "a are extracted specially from the series F, and 

L II It is understood that the characteristic scale of variation of the external force Pi 

is very much greater than the shell thickness, and pi = O(&&(E is the strain amplitude 

of the shell). 

Let us substitute (5.2) into the functional (5.1) and retain terms on the order of h;', k;’ 

hi;, k;:, and 1. By using the orthogonality of the different branches we obtain that the 

Lagrangian consists of the classical Lagrangian of the low-frequency vibrations and the follow- 

ing Lagrangians of the high-frequency vibrations: 

(5.3) 

Here x are defined by (3.1). 
P, = Pirai, [ill = A IE=h,e --A 1+-h/$ 

By varying the action, we obtain the forced high-frequency vibrations equations 

F,: $(W2p)[((+g + k3) II- klAu] C & [I + (&)%I UY~ --p +($)'~zAu.I~ = 

(P) (-- 1,--q- [P] (- 1)” + [Iya] hey)n et3 

The equations for the branches L, and L,! agree with the equations for the branches F-L 

and P,, upon making the respective substitutions: u-Q> tg B - (- ctg P) and % -+ G. ctg cz -+ 

(- tg a). 
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